In this tutorial, you will learn
1. How to import the Pandas library?
2. How to create Series Object?
3. How to create a Pandas DataFrame?
4. How to display data in Pandas DataFrame?
5. How to get the Pandas DataFrame summary?
6. How to display the Pandas DataFrame Index?
7. How to transpose a DataFrame in Pandas?
8. How to check Null Values in Pandas DataFrame?
9. How to read files in a DataFrame in Pandas?
10. How to write Pandas DataFrame to a file?
1. Import the Libraries
import pandas as pd
2. Create a Series Object
series_object=pd.Series([1,2,3,4,5]) series_object

3. Create a Pandas DataFrame
df=pd.DataFrame({'Dates' :['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06'] ,\ 'ID': [1,2,3,4,5,6],\ 'Names':['A','B','C','D','E','F'],\ 'Designation':['Manager','Employee','CEO','CTO','Manager','Employee']}) df

4. Display Data in Pandas DataFrame
df.head(1)

df.tail(1)

5. Pandas DataFrame Summary
df.describe()

6. Pandas DataFrame Index
df.index

7. Transpose Pandas DataFrame
df.T

8. Check Null Values in Pandas DataFrame
df.isna()

9. Read files in Pandas
csv_file=pd.read_csv("file_name.csv") excel_file=pd.read_excel("file_name.xlsx")
10. Write Files in Pandas
pd.to_csv("file_name.extension")
Summary
1. Display DataFrame using .head( ) and .tail( ) method.
2. Transpose a DataFrame using .T( ) method.
3. Check null values using .isna( ) method.
4. Read files using pd.read_csv( ) method.
5. Write files using pd.to_csv( ) method.
You can find the Github link here.